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on sodium and potassium are calculated using a model for the polarization
potential which was earlier used for cesium. In all the alkalis studied,
the low energy scattering cross sections show an extreme sensitivity to
the exact shape of the polarization potential in the region where r is
comparable to the atomic radius, indicating the necessity of having an
accurate description of the polarization term in the total scattering

« interaction potential. An attempt is made to derive the polarization !
potential applicable to the low energy collision problem, and calculations
are made for electron - cesium atom collisions, It is found that the

derived polarization potential has general features similar to those of

the model, The results are compared with the available experimental data.
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Introduction

In & previcus paper & model was prescsed to Include the polarization
ential in the total interaction potentizl for the scattering of siow

electrons by cesium atoms. The method used was similar to that of

. 2
Robinson
except in the form assumed for the polarization term. In the first part of
the present paper we extend the use of this model to the scattering of elec-

trons by other alkali atoms. We have found that the low energy scattering

show an extreme sensitivity to

—a e T U 3 o am A ~ = ~ - 3 Ty e - .
tne exact szzjpe ci the oolarization potencial irn the region where v is

combsarable to the atomic radius. It would thus be desirable to be able to

rovlem whlch 1s accurate Zor all values of r., A number o
for electron - hydrogen collisions have been madye | and a polarization
2

. However, for heavier

atom:, few investigations have been made of the zolarization potential,

Iy

P -~ - - - . 4 . K4 o~ e =
Cullavway  has czlculated poliarization potentials for the core electrons of

b TR S R - s - 12 I -;‘61,‘ Ta g 3
alikali metals, and in a recent paper Stone and Reitz have obtained the
no_arlzation potentizl for clectron cesium atem collisions in their analysis
of Low energy electron scattering. In their caiculation, only the contributic.
from the podulation of the 6p level was included in the polarization potential,

-

At small relii other contributions can become important in the calculated

arizeticn potenticl and should be include

[aR

adizheatic model, in which the atomic system is assumed to polarize in response

to the instantaneous position of the incident particle, and first order
percurbation theory to derive the dipole polarization potential for a charged
rorticle in the field of an atom., The analy.is, which is similar to that used

b

; 7 . . .
by Reeh’'for determining the polarization of the core electrons for hydrogen-
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like ions is then applied to the cesium atom to obtain the polarization

potential for the electron scattering problem.

I. Model for the Scattering of Slow Electrons from Alkali Atoms.

A. Method of Solution

The elastic scattering cross sections for potassum and sodium were
obtained in exactly the same matter as that described in I. The model for the
effective scattering potential consists of the Hartree potential function for

the neutral alkali to which a polarization term of the form

w - o - expr_/r\s_l{?

v (1‘) = —_— ( — 1N
i 2t L L \&) 1]

is added, where o 1s the experimental polarizability for the atom in question

pod

znd the guantity £ r is the so called cut off parameter, The complete

interaction potential which appears in the scattering equation is then

8
Vi) = VH(r)/r +<°</2r4> <- exp [— ( fio) ]) (2)

{r;/r is the Hartree potential function. In the present calculations

where V.
the Hartree potential V_(r) for potassium was taken from the results of
H

Hartrees and of Gibbons and Bartlettg, and for sodium the potential function of
= .10
Fock and Petrashen  was used,

The constant ¥ was again taken as the position of the last maximum of
th.e valence electron wave function (ro = 5.0 a, for X, and r, = 3.5 a, for
z) and the parameter f was varied over a small range near £ = 1.0, Two
- s . 11
clfiferent values of the polarizability from the literature =~ were used for

©3 o3 3 . <3

each case; & = 36 A™, 45 A” (248, 326 ao) for potassium and = 24, 27 A

(161, 182 ai) for sodium,
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B. Results for K and Na.

The total elastic scattering cross sections for K and Na were obtained
by the phase shift method {(neglecting enchange) as described in I. It
was found that the cross sections Ifor both atoms were extremely sensitive
to the shape of the polarization potential as determined by varying the
» = s my, .2 b = K ]-
parameter £ in eq. (1). This same result was found previously for Cs™,

We note that a change in the cut off parametex fro changes the position

h

}
1]

et
HRes

[e N

0z maximunm

th

e of the magximum in the polarizeation term V , t

[N

and ™

v

gL
lying near the position of the

funciion Zor the atom in question (Fig. 1 of Ij.

T TR 1 P e o~ -1 = 3 - o~ PR = =4 T AT
in Tizs. 1 and 2 we have plotted the resulis for K and Na which best
)
(s the ewsari 21 veiues of Broder? s 3 -
fit the exjerimental veziues of Brede , and of Perel, Englander and

Bederson™~ . We see that the present model yields results which are in
good agreement with the experimental results. We will say more in the

last seczicn about the conclusions which can be drawn from the use of the

arization Potential,

z Tormulation of the Problem

We will consider a free electron incident on an unbound, stationary
aton, If we let e denote the position vector of the free electron and T

that of one of the bound atomic electrons, then the total Hamiltonian for the

syscem can be written:

_ T oy , £ .
H = Ha (r) + Hf \rf) + W (x, rf) 3)
§
where W (r,rf) = 2 Fi - rf{ . (%)
L

In this decomposition Ha(r) is the Hamiltonian of the unperturbed atom,

Hz(Eé) is that of the free electron, and W(r, rf) is the interaction of the
FN
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free electron with the atomic electrons., Considering first the case of a
hydrogen like atom or ion we write the total wave function %%J(E,ff) for
the system in the form
oz = N (f % (F
YE T s DG ) wEp . (5)
Here Cfi (z, ;f) describes the target atom, and W(rf) describes the free

electron., The complete wave function ‘f{(r, r_.) has not been antisymmetrized

-
£
Py

here, thus in the present calculation the effect of electron exchange on the

consistant with the use

w

polarization potential will be negiected. Thais 1
of ZTartree wave functions to describe the unperturbed atom. The wave

function for the perturbed atomic electrcn is now written as

3

D G E) = Pyd + LG T (6

-
where G)b(r) is the unperturbed wave function for the atomic electron and

satisfies
H() P () =8 O
2 (¥ CPO(T) =E CPO(L)
(7
/5 N s = 1
\'re ’ @o\)
end T_(E, r_) is first order perturbation of the orbital electron wave
&
function. 1In addition we require that —_ —
<CD0’ Ay =0. C)
—

In this representation the Schroedinger equation for atomic scattering

i (3, () + B +HCrp] (oD TG ) ¥(Ep)

The polarization potential in the total interaction of free electron
p

9

and atomic system can be obtained by performing a scaler multiplication

from the left on eq. (9) above and make use of equations (7) and (8). Thus

5 (o) e @) ) ) ) oo

Looking at the last two terms on the right side of eq. (10) the second
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term can be identified as the mutual interaction energy of the free electron
with the atomic electron and the third term represents the mutual interaction
of the free electron with the perturbation of the atomic wave function; this

then is the polarization energy. We thus make the identification:
v (rp) = <q>o W 7L> (11)
where Vp(rf) is the polarization potential seen by the free particle due to
the distortion of the target atom,
A differential equation for the determination of the perturbation, X,
can be obtained from the Schroedinger eq. (11) describing the scattering
process, After obtaining the expression for E from eq. (10) and substituting

in equation (9) and rearranging the equation becomes:
(F WY (D, + )Y 7 (He k-7 )
=[5 (& wg) +<&wxd [ (&+DY .

At this point a simplification of the equations can be affected by making

(12>

use of the adiabatic approximation which was mentioned earlier. The polari-
zation of the orbital electron is considered as taking place in the static
iileld of the slow incident particle. The dynamic equation above, which
determines the distortion of the atomic orbital and also the effect of this
distortion on the external electron, is thus replaced with the static problem,
This is done simply by fixing Te in eq. (12), causing the second term on

the left side to disappear, The equation then becomes:

[Ha(l‘) + W<r,rf>] (@Ja + 7Uf,ff>> {Eo +<CP0’ LN
B P W)]@® + A o)

We now consider the interaction W(r,rf) as a perturbation on the unper-

(13)

turbed system which satisfies eq. (7), the solutions of which are considered
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known. If we consider this term small as compared to Ha(r) and keep only
terms through first order in the perturbation ;K , eq. (13) is greatly
simplified, With this approximation and the use of eq. (7), the above'
equation becomes:

}:Ha(r) - E, j L OE T - Kpo, qu;- w(f,ff>]@o © (14)
This is an inhomogeneous differential equation for the determination of the
function jx;(r,rf). This was solved by Ob”Edkov/+ through a variational
tectnique for hydrogen and helium in their ground state, and analytically
by Reeh7 for hydrogen and hydrogen-like ions.

B. The Hartree Approximation for a Many Electron Atom

[}
re

For a multi-electron atom an analysis somewhat similar €
sesaration of the atomic electron wave functions (without exchange) may be
used to obtain a polarization potential. ZLet us replace the Hamiltonian for

the complete atom

B () = (—’/VL—Z/f)*/LZ T

7h
with a separated operator of the form

Ha(r) = ;i Hi (ri)
where H;(ri) depends only on the coordinates of the ith electron and the

average eifect of the other electrons., The wave function for the atom is

similarly separated in the form

@Jr) = ) Poi) ... PG

Hy CPi=EicPi : (1)

Finzally, the complete wave function is written

S+L = (c%wo(cprx) (@, +x,)
<CP& \/)Lc> =0 ) <CH )CP;):‘ I

with

(16)
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With this approximation the first order equation (14) becomes, in the

multielectron case,
"‘ -
L Hi-Ei] Yy Gpxp) = [<CR vy @ i> Yy ] @ =) an
Where
Z " 1
W= Lv 5 Vi T | % | )
i f i
This is an inhomogeneous differential equation for the perturbation Jti of
the single electron orbital Cpi of the complete atom., The polarization

potential for the complete atom is then

;E:j Sﬁ Cp¢ vﬁ :X’L Qg i;
Z vp{ (z.)

Vp(rf)
(18)

where

3
VPi(rf) - ‘JQCR W 7('; Cé v (19
Thus in this approximation the polarization potential for a many electron
atom may be calculated by considering the contribution due to each of the
various orbitals, which may be known Hartree solutions for the atom in
guestion,

C. The Radial Equations

The inhomogeneous equations (14) or (17) for the perturbation I can be
se_arated and radial equations for the various angular momentum states
wrictten,

(1) The Dipole Approximation

Returning to eq. (17) we write it in a more explicit form. For the ith

electron we get:

; '%Vi +V(ry) 'EoJ K gt = yﬁl T, ¢ia(3ri - % p;(ry) (20)

i if . if

We choose a coordinate system in which the z-axis is oriented parallel
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to the position vector rg of the free electron. 1In this system we make use

of the usual expansion

1

1 Gﬁﬁ_ )E rz ?;(9,0)
r.,. 2a+1l’ —
A=0

if A+l
> (21)
=-l— + < cos + T< (3cosze-1) +....
< 5 =
r2 2r3
> >
where r< is the lesser and r> the greater of T, and . In this expansion

the term in cosf gives the dipole potential, the (3 c0528 -1) term gives

the gquadrupole and 'so on. We will drop the quadrupole and higher order terms

in the expansion above and keep only the first two terms in the 1/rif series.
If we now substitute the expansion (21) for the 1/rif term in the

intergral on the right side of eq. (20), all but the spherically symmetric

term vanish., With this result the two terms in the brackets on the right

side of (20) become:

r o0
f r
Y- { * 3 J- * 1 3 1 < cosb
; AT g PP+ #; 5. #id T - T 2
— ':.10 \Qrf 1 >

We note that for large values of r_ the first term in the bracket above

f

goes to 1/rf and the second term goes to zero. This first term then cancels

the third leaving onl X< cos6 which is the dipole term, the monopole term
g y 7 P s P
r>

having vanished. TFor small values of r_ the monopole term does contribute

f
of course, but it goes to zero exponentially for large .. For smaller
values of re, where the monopole contribution is appreciable the coulomb
potential of the partially shielded nucleus becomes large, and tends to mask
tnis term. We will thus make the 'dipole approximation'' at this point and

consider only the last term in the brackets above, that is, the dipole

contribution in the total polarization potential. We then have the equation
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for the perturbed wave ’)Li in the form:

[ 2 _ T
L - = - —
L-ZVi + Z (ri)/r. EOJ ‘)Ci(ri,rf) > cosh ¢i(ri) (22)
i g
which is actually the two equations
r
172 ' S &
[‘zvi + 2 (r )/ri - Eo] X/i(ri,rf) = - r2 cosd ¢i(ri)
£
(rg> 1)) (23)
2 Tt
1 - = - —
-1 Vi + Z(ri)/r:.L Eo] xi(ri,rf) rz cosH ¢i(ri)
i

These equations can be solved for the perturbed wave "Xei where the
solutions to (23) must be joined at the boundary ro= Tl The dipole

polarization potential integrals to be evaluated are:

o L .
Vp(rf) = Z —1—:2- j £ ¢i(ri)ri cosb ')(,i(r]._,rf)glri
i rf o

(24)
had cosH % 0(
+ T ff (r)) =5 KLy(ry,re) dxy
rf ri

(2} Contributions from the Various Angular Momentum States
We will consider individually the perturbations of electron orbitals

of angular momentum { = 0, 1, 2. We write the unperturbed wave functions

b

in the form

m
$ @ -r , 7 6.0 VICER D 5

where Pn,{<r) =T an (r) is the reduced radial function. We also expand the

perturbation ’X/ in the form:

A T = > > Xy () f;‘:(e,gs)(——‘*,l‘—

X Ja <k 2K+1 (26)

(V[
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For convenience let us make the further variable changes

Xk’,m’ (r,r) = Uy »(r,Ty) (27)
T

and 2E = - ¢ .,
o

With these variables the general differential equation (22) then becomes:

E _5_ d? K (K +1) 2 Z(x) bt o
g (&=, - e s [ u, (r,r) Y, )
X ]mv 1 Oirz k,m £ k

r2 T Zkl-é-l ’
(28)
_ 2 [ 40 30 5.0 2 () Y™ (0,9)
5 VV 3 1 ’ n,x £ 7
T
>

where the cosf term on the right side of (22) has been written as a spherical
harmonic and anh(r) YT (6,%) are the appropriate radial and angular functions
for the unperturbed state in question. The index i has been dropped from
the bound electron coordinate for convenience.

The appropriate radial equations for the perturbation 7( of an orbital

(D) are obtained by performing a scalar multiplication from left on equation

G

(28) with *

vl (8,9)
1

(9) s-states

We consider the case where the unperturbed electron is in an s-state.

In this case

— P () '
P = B ¥ e . (29)
o]

The before mentioned scalar multiplication of equation (28) leads in this case
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to the single radial equation

2
&, E2® L2y () =P r (1) = . (30)
T 2 1,0 f no
! drz T r2 J g
[ >
The solution to this equation with equation (26) and (27) gives
U (xr,r,) o b
(r,r.) = 1l,0° °°f Y. 6,80\ o
Wy 0 = s L

which is the perturbation of an s-state atomic electron., We note that the
perturbed wave has p-character, and thus corresponds to the excitation of
the n-s orbital in question to a p-orbital, The notation used to designate
the perturbed wave is that of SternheimerlA; the symbol 0-»1 means a state
with £ =0 going to an L =1 perturbed state. In general the notation
,Q->,2I will indicate an orbital whose unperturbed character is X being
perturbed in such a way that the perturbed wave A has ,€' character,
The polarization potential as contributed by an s-electron is obtained

by substitutiné the solution (31) in the integral (24).

(b) p-states

For p-states we have A=1 with m=1, 0, -1. We write the unpert-

urbed p-function in the form
=y P
A= PP P ew. (@ = ¥1,0) (32)

Consider first the p-state with m=0. Carrying out the same scalar multi-
nlication as before on eq. (28), the right side vanishes unless ml=0,
kl=0, 2, therefore we get two equations for the m=0 p-states. Thus for

k].:O:
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£, me e | v L n me L
2 V 3x (33)
s

The perturbed wave from this equation is then

D =U ° N2 34
/Cl__m(r,rf) . oir,rf> 2 (6,9) Y 4 (34)

fo
td
[
[»}
[95]
-t
"
v
3
n
'.I
-t
'—l
Q
3
n
I-Jn
13
O
14
t
=g
1]
nJ
[+
~
T
g
o
i
ja ¥t

wave has s-character. Similarly for k1 = 2 we get:
T2,
iod Z(r) r 2
o . = 4 2 -¢ | U, (r,r.)) = < P__(r)
er r2 T 2,0 f nl , 3n‘ (35)
— r>
Thus for a p-state with m = 0 we also have the perturbation contribution
(r,x.) =0, (r,r.) o bx
;K;1_>2 £ 2,0r £ Y2 (6,0) 5 (36)
This indicates a p-» d transition since the perturbed wave has d character.
For the p-state with m = + 1 the scalar multiplication of eq. (28)
yields a contribution for kl =2, m = +1, The radial equation for the
perturbation of a p-state with m= +1 is then:
—
2
d A Zfr) r
drz- rz + 2 - - € UZ, +1(r,rf) = < Pn’l(r) 1 37

2 T
s
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We note that this equation is identical to equation (34) apart from a
2

B -

The perturbed wave for a p-orbital with m = +1 is then written

constant

- = U, +,(xr,r.) +1
(r,x.) = ~2,-1*7°"°f 2 A4
i;x;1;>2 ' f -—*—;—-——-— Y, (6,8 \3 . (38)

The contribution to the polarization potential from p-electrons is then
obtained by substituting the perturbations (33) and (35) in the polarization
integral (24), summing and multiplying by two, since there are two p-electrons
with m = 0, and likewise substituting the perturbation (37) for m=1 states
multipl&ing by four and adding this to the m=0 contribution since there are
four electrons in the m={1 states. This then gives the total polarization
potential contributed by p-electrons.

(¢) d-states

Considering the d-states we have‘Q =2, m= TZ, fl, 0. The unperturbed

wave function is written in the form

D @ = R L) ¥ ©.9) (n= ¥2, 1, 0) (39)

(o]

With this expression for'qs , the scalar multiplication of equation (28)
o

with YEI (6,%) leads to equations for values of k., =1, m =0, *1 and
1

1 1

x;=2 until =0, T1, *2, corresponding to the following modes of excitation.
1 ml 3 H] ’ p g

d - p m=0, 71

a-» f m= 0, ¥1, 2
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The solutions to these equations, which are similar to those above, along

with the angular functions yield the perturbations :X: (f,; ) for.

2=>1
m = 0, and fl, and j%: (f,;f) for m=0, *1 and T2, The total polari-
2=3

f

zation potential as contributed by d-electrons are similarly obtained by
integrating the corresponding polarization integrals for each state and
multiplying by the number of electrons in that state.

The total polarization potential for an atomic system is finally
obtained by adding together the contributions from each of the states
considered,

ITII. Results for Cesium

The formalism of the previous section for the calculation of the
polarization potential in the atomic scattering problem was applied to the
case of low energy electron-cesium atom collisions.

A. Method of Solution

Let us note first that all the radial equations for the various

angular momentum states with a change of variable of the form

m
qz’m(r,rf) = Aﬂ— Wz’lxr,rf) : : (38)

can be put in the form

2 Y '
9_2 . ﬂﬁ.ﬁi?l_). . 220 W ;(fa’ff)::s P (1) (39)
dr r r Lop r 2 1 ‘
>

Here A" is the appropriate constant for the radial equation in question. We

v
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will consider the solutions to eq. 39 for the ce;ium atom,

For the present calculation, the ordinary Hartree wave functions for
cesium were used for the unpexturbed system. With these functions, the
equations (39) were solved for the perturbations :X, , and the polarization
integrals evaluated for states appropriate for the cesium problem, 1In
equation, (39) Pn‘l.(r) is ;he reduced radial wave functions from the Hartree
calculation for a given shell n, with anguiar momentum ,f. The quantity

€ is the eigevalue from the Hartree solution for the given n,ﬂ orbital and

A¢9)

r

is the Hartree potential function,
The radial equations for the perturbations ;{,i were intergrated numeri-
cally using an inward method of integration starting at a large radius .
For this purpose equation (39) was written in a form similar to that used
. 14 . .
by Sternheimer” . That is, we write:
d2 ~
— W, /(r,xr.) =GW, ., (xr,r.) (40)
dr2 1,2 > 1,2 Tt

’

Where the term G is given by

G(x)

PR r P_, ()
_ Z(,ﬂ; 1)‘ _ 2z(r) f  'n{ (41)

+ € +
r T r2 Wg’t(r,rf)

T .~

It was assumed that G is constant for r>ry, which means that for a given
value of W;P 2:(rl, rf), the value at T+ é;, where é;’is the increment size
> .

on r, can be calculated from

It Sixp =¥, prre el - oty 8 (42)
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the value of G(rl) having been previously obtained from (41). The

numerical integration was thus started by choosing a value of W j(rl’rf)

and calculating the value of Wz’i(r,+5:rf) from (42). With these starting
values, the equation for I Iy was integrated inward to r = Te where the
solution to the equation for T Iy was matched and the integration continued
inward to the orgin. This procedure was repeated for several values of

1

for which the solution goes to zero at the origin. To see that this should

Wi f(rl’rf)' The correct starting value at the large radius r, is that
3

be the case, we look at the different equation (39) for r<r_.. We note that

142

near the origin the term on the right side goes to zero as r since

£+ 1
Pni(r) goes as r

near the origin., Thus the solution to the inhomo-
geneous equation (39) near the origin is proportional to that of the homo-

geneous equation

Q—E - 4L££i%l + 2 z(r) | e [ W ,(r,rf),= 0
dr b T ? '

But this is the equation which is satisfied by Pnz_(r), that is, the Hartree
/
function for {= AL . Thus near the origin the solution to the inhomogeneous

aquation behaves as

W} ’ll(r,rf) —_ r£+1
for r- 0; hence the stipulation that the correct starting condition for a
large value of r should be the value of Wf,i(r’ rf) which makes the solution
zero at r = o, In the actual calculations the value of w},i(rl’rf) was
varied over some range until two values were found'which enclosed the correct

value. For two such values, the solutions Wx d(r, rf) diverge slowly, one to
14
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positive values, the other to negative,. Tﬁe correct starting condition at-
r, was then found by narrowing the interval between the two values which
enclose the correct one,
The integration procedure was performed with a program wriﬁten for the
IBM 7090 computer. The numerical method was a modification of the Numerov

process for a linear second order differential equation.

B. Polarization Potential for Cesium

The cesium atom, with fifty-five electrons occupying six electron
shells, presents a very complicated system for the perturbation calculation,
The problem is greatly simplified, however, by the fact that the inner elec-
trons, which are very strongly bound, are perturbed only slightly by the
field of the incident particle.‘ Sternheimer, in his calculation of the
polarizability of alkali ions, considered only the contribution of the
outermost shell to the polarization potential, finding the contribution
from the inner electrons to be negligible, 1In the present calculation,
the perturbation of one of the n=4 states was determined and found to be
negligible as'compared to that of the n=5 states and even less as compared
to the contribution from the valence electron. Thus the contribution to the
total polarization potentialldue to the inner electron was neglected iﬁ the
present calculation; the potential function was determined by the perturb-
ation of the two outermost shells.

Returning now to the notation of Section II for the perturbed wave
function fZQ’d(;, ff) the following solutions were obtained.

5-8 States

For the two 5-s electrons the radial equation (30), for an S=P solution

was solved by the technique described above. The solutions to this equation
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in (31),:{ 091(1-, rf) for one particular value of T, was then integrated
numerically for the polarization potential (eq. 19) and multiplied by two.

We note that the solution of these equations for some particular re gives

the contribution of the s-electron to the polarization potential at only

one point, namely at the position Te from the nucleus., Thus in order to
obtain the polarization poﬁéntial for all distances of the perturbing electron
from the target atom, the radial equations must be solved and the polarization

integrals evaluated for a wide range of values of r In this way the exact

£
shape of the polarization potential can be determined as a function of the

distance of the incident particle from the target. Thus the

[

quations were
solved in every case for twenty-seven values of the free electron position
T, and the polarization potential determined at each of these points, in
this way the value of Vé was ascertained to the desired degree of accuracy
for all positions of the perturbing electron. The unperturbed radial func-
tion and the perturbation USs-a P for one position of the free electron is
shown in Fig. 3.

S>-p States

There are six electrons in the 5-p state, two with m=o and four with
m=t1, The m=o0 states satisfy equation (33) the solution of which determines
17(.L90' The m=0 states also satisfy eq. 35 whose solution U2,o in
equation (36) determines ;}f 125 &P~ d perturbation. Equation (33)
and (35) were solved in the same manner as described above for the 5-s
states. The solutions to the differential equation for each value of Te
were subsequently integrated numerically to yield the polarization potential,

and multiplied by two since there are two m=0 electrons.

For the p-states with m==1 equation (37) was solved similarly yielding
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the radial perturbation UZ, + which together with the angular function
Yil(e,¢) of equation (38) determines the perturbation‘;(iﬁ,z; ap—=>d
excitation.

6-s_State

The valence electron which is in the 6-s state, undergoes an s—» p
perturbation similar to the 5-s state, and was treated in the same fashion,
the only difference being that the starting values at a large radius r
were taken at r = 25 a, in the 6-s case, whereas all the n=5 states were
started at r = 14 a,. This was necessary since the valence electron wave
function becomes asymtotic much farther out. Also, the polarization inte-
grals were not multiplied by two in this case since there is only one 6s

electron. The radial wave function and the perturbation U o for rf=16.0 a,

1,
are shown in Fig, 4,

For comparison the polarization potential as contributed by the valence
electron and the total contribution from the n=5 electrons is shown along
with the Harteg potential function in Fig. 5. We note that in the region
from r=o0 to r = 3a° the total contribution from the n=5 shell predomiates,
the.valence electron contribution being almost negligible., And conversely,
in the region r> &4 ag the valence_electron contribution is larger than that
of the inner electrons, the latter becoming negligible rapidly for large r.
Cne also notes that the polarization potential is negligible as compared to
that due to the screened nuclear change for small r (r < 1) and on the other
hand for large r (r > 6), the Hartree potential is negligible as compared |
to the polarization term,

The sum of the contribution from the n ;~5 states and that of the
valence electron gives the total pdlarization potential for the electron
scattering problem in the present calculation. An estimate of the accuracy
of the calculated polarization potential can be made by noting its asymtotic

behavior,
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We know-of course that the value of the polarization potential for large
values of r should correspond to that yielded by the dipole polarizability
&X . Thus we can compare the value of the calculated polarization potential
at some large r (r ~ 25ao) to that yielded by the experimentally determined
value of X , Using this comparison we find that the polarization potential
calculated here corresponds asymtotically to a value of « which is 2~ 3
times the experimental value, depending on which experimental value is used
in the comparisbn? Thus the calculated polarization potential is consider-
ably larger than it should be for large values of T.. This result is not
unexpected however in the light of Sternheimer's work on calculating polari-
zabilities, TFollowing the argument given by Sternheimer we note that the
Hartree wave functions which we have used gives less binding energy tﬁan the
actual wave functions should give and are thus more external. An increase
in the binding of an orbital would decrease the contribution to the polar-
ization potential from that electron. The Hartree-Fock wave functions for
an atom or ioq have lower energies and are thus more tightly bound than
those yielded by the Hartree solutions, hence the use of Hartree-Focks wave
function would decrease the calculated polarizatioﬁ potential, a point shown
by Sternheimer in his calculation of the polarizability of F~ through the
use of both the Hartree and Hartree-Fock solutions.15 However, even the
Hartree-Fock solutions do not yield binding energies as low as the actual
wave functions should give, and the corresponding polarization potential is
still somewhat too large even in these cases., Sternheimer obtained values of
the polarizability which were 1-1.5 times the experimental values for iomns
whose wave functions were of the Hartree-Fock type and a value which was ~3
times the experimental wvalue through the use of the less accurate Hartree

14,15

Solutions . Thus the results obtained here are consistent with these




"2
calculations in the magnitude of the polarization potential., We were, of
course, unable to use Hartree-Fock solutions for cesium, though better
results would be expected.

We will make one additional observation concerning the results of the
present calculation as pertains to the problem of interest to us here. We
note that the use of the Hartree wave functions need not affect the shape of
the calculated potential function as much as its magnitude for large r. If
we consider the contribution of one electron, say the valence electron, to
the total interaction we would expect the use of the actual wave function in
the radial equation to yield a perturbation similar to that of Fig. 4, with
both the unperturbed wave function and its perturbation
more internal, Looking at Fig. 5 we would then expect that the effect on the
polarization integrals would simply be a slight change in the position of
the maximum of the valence electron contribution, with the shape remaining
essentially unchanged. The same argument would also hold for the othef
electrons. We can expect then that the use of the actual wave functions in
calculating the interaction potential would not change the overall shape of
the potential function appreciably but would reduce its magnitude somewhat
and shift the position of the maximum in the contribution of the various
obitals, This is an important consideration in the calculation of scattering
cross sections which we are considering here, since we have found that the
shape of the polarizatiog potential is very important in the low energy
scattering problem, In calculating electron scattering cross sections for
the cesium atom we can then simply normalize the calculated polarization
potential to the observed asymtotic value expected from the experimental

. . R - ... 6
polarizability; a treatment which is similar to that of Stone and Reitz .
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C. Scattering Cross Sections,

The calculated polarization potential was used in the same method as
described in section I, where the term Vp(r) is in this case the calculated
potential, The scattering cross sections were obtained by the same method
as in I for the same energy regions, The results shown in Fig, 7 were
obtained using the polarization potential of Fig. 6 normalized to correspond
to a value of 360 ai for the polarizabiliﬁyq(_at large r. The cross sections
were also calculated using the unnormalized potential function and with a
normalization corresponding to o(: 283a2. In this way the dependence of
the cross section on the magnitude of the polarization potential was deter-
mined. It was found that the shape of the curve in Fig.7 was essentially
unchanged by using different values of &, For the large value of the
polarizability the values of the cross sections were increased, and conversely
for a smaller value, the curve was lowed for all incident energies.

The cross sections shown in Fig, 7 aréyseen to agree quite well with the
experimental values of Brode for energies greater than 2.5 eV, The values
lie somewhat lower than those of Brode, but his experiment included in-
elastic collisions. The calculated cross sections also agree reasonably well
with the very low energy values measured by Chen and Raether,16 but disagree
completely with the various plasma experiments 17 in the region from ,075
to .8eV., The work of Stone and Reitz6 in this region has shown that exchange
effects are important for these energies. Since exchange has been neglected

here, the calculated cross sections are expected to be somewhat too large in

this region,
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IV, Conclusions

From the results obtained here and in I we can conclude that
a simple model can be used to describe low energy electron scattering
by the alkali atoms, where the distortion of the target atom by the
incident particle makes the major contribution to the scattering
cross sections., From the sensitivity of the cross sections to the cut
off parameter of the present model, or more precisely on the position
and magnitude of the maximum of the polarization potential, we can
appreciate the importance of knowing accurately the contributions to
the total scattering interaction due to the distortion of the target
atom. Through the use of the adiabotic approximation and the first
order perturbation method, this distortion can be determined and
the resulting polarization potential calculated for the low ;nergy
scattering problem. Our results for the cesium atoms indicate that
the inner electrons make an appreciable contribution to the polari-
zation potenti?I for small values of the frée electron coordinate Tes
but that the valence electron makes the major contribution in the
important region where the Hartree potential becomes negligible. The
valence electron contribution exhibits a shape which has the same
character as that of the simple model which we have used, that is,
the maximum occurs at the approximate position of the last maximum
of the‘unperturbed valence electron wave function. The external
nature of the Hartree wave functions, especially that of the valence
electron, causes this maximum to lie somewhat too far out. From the
results obtained with the model showing the sensitivity of the cross
sections to the shape of the polarization potential in this region
we-can conclude that the use of the simple Hartree wave functions to

represent the unperturbed atom in the perturbation calculation can lead
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to considerable error in the calculated cross sections in the 1ow energy
region.

Tinally we conclude that the adiabatic approximation and the

perturbation theory of this analysis when applied to a system whose

&)

unperturbed wave functions are known with suificient accuracy, can
yield reliable results for the problem of the low energy soft potential

scattering of a changed particle.
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Figure Captions

Fig. 1 Total elastic scattering cross sections for potassium
yielded by the present model, compared with experimental

values of Brode and Perel et. al, ( &X =248, fro =4.75,

k =e).

Fig. 2 Total elastic scattering cross sections for sodium from
the present model, compared with the result of Brode and

of Perel et. al. ( X =161, fro= 3.6 75). .

Fig. 3 The unperturbed radial 5s wave function and the perturbation
5s— p for cesium,
Fig. 4 The 6s wave function and the perturbation 6s —» p for cesium,

r.= 16.0a .
L o

Fig. 5 The Hartree potential function and the polarization potential

F

contributed by the n = 5 and n = 6 electrons for cesium.

Fig. 6 The total polarization potential V_(r) and the total inter-
P
action potential VH(r) + Vp(r) for cesium (normalized).
Fig. 7 Total elastic scattering cross sections for cesium from the

N

erturbation calculation compared to the experimental values

o

ge]

of Brode and of Chen and Raether.




